Long Arithmetic Progressions in Small Sumsets

نویسندگان

  • Itziar Bardaji
  • David J. Grynkiewicz
چکیده

Let A, B ⊆ Z be finite, nonempty subsets such that maxB − minB ≤ maxA − minA, gcd(A+B−c) = 1, for some c ∈ A+B, and |A+B| ≤ |A|+2|B|−3−δ(A,B), where δ(A,B) is 1 if x + A ⊆ B for some x ∈ Z, and is 0 otherwise. Assume one of the following conditions holds true: • maxA−minA ≤ |A| + |B|− 3, • gcd(A− a) ≤ 2, for some a ∈ A, • |A + B| ≤ 2|A| + |B|− 3− δ(B,A). Then A+B contains a (|A|+ |B|−1)–term arithmetic progression with difference 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARITHMETIC PROGRESSIONS IN SPARSE SUMSETS Dedicated to Ron Graham on the occasion of his 70 birthday

In this paper we show that sumsets A + B of finite sets A and B of integers, must contain long arithmetic progressions. The methods we use are completely elementary, in contrast to other works, which often rely on harmonic analysis.

متن کامل

Arithmetic Progressions in Sparse Sumsets

In this paper we show that sumsets A + B of finite sets A and B of integers, must contain long arithmetic progressions. The methods we use are completely elementary, in contrast to other works, which often rely on harmonic analysis. –Dedicated to Ron Graham on the occasion of his 70 birthday

متن کامل

The additive structure of the squares inside rings

When defining the amount of additive structure on a set it is often convenient to consider certain sumsets; Calculating the cardinality of these sumsets can elucidate the set’s underlying structure. We begin by investigating finite sets of perfect squares and associated sumsets. We reveal how arithmetic progressions efficiently reduce the cardinality of sumsets and provide estimates for the min...

متن کامل

Arithmetic Progressions in Sets with Small Sumsets

We present an elementary proof that if A is a finite set of numbers, and the sumset A+G A is small, |A+G A| ≤ c|A|, along a dense graph G, then A contains k-term arithmetic progressions.

متن کامل

John-type Theorems for Generalized Arithmetic Progressions and Iterated Sumsets

A classical theorem of Fritz John allows one to describe a convex body, up to constants, as an ellipsoid. In this article we establish similar descriptions for generalized (i.e. multidimensional) arithmetic progressions in terms of proper (i.e. collision-free) generalized arithmetic progressions, in both torsion-free and torsion settings. We also obtain a similar characterization of iterated su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010